9.3.2 discharge pressure: the pressure a pump must overcome to transfer liquid, as measured by a gauge in a pipe at the discharge point after the check valve for the pump.

Reason: definitions are informational and cannot have requirements.

9.4.1.6 Negative head test

Testing against negative head shall be conducted by operating the pump for three on/off cycles, under each condition, with the discharge point 0.9, 1.8, 2.7, 3.7, and 4.6 m (3, 6, 9, 12, and 15 ft respectively) lower than the pump. During each test sequence, the power to the pump shall be monitored for ampere draw, voltage, and watts. Any erratic behavior of the pump shall be noted in the final report, along with the elevation difference at which it was first observed.

NOTE—The negative head test conditions specified in this section are the conditions that shall exist at the pump. Negative head can be simulated using a vacuum source.

Reason: Notes cannot have requirements, they are informational. Make this note a statement under the test.

9.4.2.1 Structural integrity test

Connections to the pump basin shall be sealed, and a vacuum shall be applied to the basin for a period of 60 min. The applied vacuum pressure shall be equivalent to 150% of the pressure that the basin would experience if submerged vertically (normal upright position) in water to the basin’s designed burial depth.

Reason: Cannot use “would” for a requirement. This corrects the terminology.

11.4.2 Schedule of evaluation

At a minimum, effluent filters shall be evaluated at 6-month intervals for an evaluation period of at least 18 months. If a manufacturer could choose to have the evaluation period extend beyond 18 months based on specific longevity claims, they may do so.

Reason: The term “Could” is confusing and is replaced so it is clear what is required and what is optional/recommendation.

12.4.2 Flow design

Chlorination devices shall have a designated flow path that is reflective of the entire treatment process. During periods of normal system operation, as well as periods of chlorination device and component
malfunction, the design and construction of the chlorination device shall preclude alternative flow paths and prevent the discharge of untreated wastewater from an opening external to the designated flow path.

NOTE—The discharge of wastewater from access ports shall be permissible during chlorination device malfunction.

12.6.3.1 Hydraulic loading

For each feed setting (maximum and minimum), flow shall be introduced to the chlorination device continuously over a 3-h period at approximately 40% of the rated minimum and maximum daily hydraulic capacity.

NOTE—This specification requires that hydraulic loading shall be carried out at 3 h per combination of feed and flow rates (four different combinations) for a total of 12 h. The four combinations are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>maximum feed at 40% of maximum flow</td>
</tr>
<tr>
<td>2</td>
<td>maximum feed at 40% of minimum flow</td>
</tr>
<tr>
<td>3</td>
<td>minimum feed at 40% of maximum flow</td>
</tr>
<tr>
<td>4</td>
<td>minimum feed at 40% of minimum flow</td>
</tr>
</tbody>
</table>

14.3.3 Flow design

Ozonation systems shall not affect the designated flow path of the treatment process. During periods of normal system operation, as well as periods of ozonation system and component malfunction, the design and construction of the ozonation system shall preclude alternative flow paths and prevent the discharge of untreated wastewater from an opening external to the designated flow path.

NOTE—The discharge of wastewater from access ports shall be permissible during ozonation device malfunction.
