Tab 3
This page is intentionally blank.
Joint Committee Issue Document

Submitter’s contact information:

Name: Sal Aridi

Company: NSF International

Mailing Address: 789 Dixboro Road

City: Ann Arbor State: MI Zip Code: 48105

Telephone Number: E-mail: aridi@nsf.org

I hereby grant NSF International the non-exclusive, royalty free rights, including non-exclusive, royalty free rights in copyright; in this item and I understand that I acquire no rights in any publication of NSF International in which this item in this or another similar or analogous form is used.

Signature of Submitter * Sal Aridi Date: June 3, 2008

Type written name will suffice as signature
Please indicate if you wish the item to be considered as an action item or as an information item.

Action: x Information: □

NSF Standard(s) Impacted:

49

Issue Statement:
Review of supplemental materials

Background:

Recommendation:

Supplementary Materials (photographs, diagrams, reports, etc.):
All motor speed stability tests shall be completed with the cabinet set to within 3 fpm of the nominal set points for inflow and downflow. All inflow measurements shall be made with the DIM instrument. All downflow measurements shall be made on the grid defined by the uniform downflow grid requirements.

Input voltage stability:

1. Measure the inflow velocity (type A1, A2, and B2 cabinets only). If the cabinet has separate downflow and exhaust blowers, measure the downflow velocity also. For type B1 and B2 cabinets measure the downflow velocity.
2. Increase the supply voltage, as measured at the location where the cabinet would normally plug into the wall by 3 VAC.
3. Measure the inflow velocity (type A1, A2, and B2 cabinets only). If the cabinet has separate downflow and exhaust blowers, repeat the downflow velocity measurement. Repeat the downflow velocity measurement for type B cabinets.

Acceptance: The difference between the inflow velocity at the initial supply voltage and the inflow velocity at the increased supply voltage shall not exceed 5 fpm. For cabinets with separate downflow and exhaust blowers or type B cabinets, the difference between the downflow velocity at the initial supply voltage and the downflow velocity at the increased supply voltage shall not exceed 5 fpm.

Logic: A line voltage fluctuation of 3 volts is not uncommon. This small line voltage fluctuation should not push a cabinet outside the envelope points if it was initially balanced at either end of the listed range.

Shock stability:

1. Measure the inflow velocity (type A1, A2, and B2 cabinets only). If the cabinet has separate downflow and exhaust blowers, measure the downflow velocity also. For type B1 and B2 cabinets measure the downflow velocity.
2. Strike the motor speed control housing with a 2.5 cm diameter steel ball having a mass of 66+/-3 grams released from a 90 degree angle (from the vertical plane at the front of the speed control housing) on a 10 cm pendulum three times. If the motor speed control housing is mounted in such a way that the largest surface is horizontal, drop the 2.5 cm ball from a height of 10 cm three times onto the speed control housing instead of using the pendulum method. The strike point shall be as close to the center of the motor speed control as possible. If the cabinet has more than one speed control, each center point shall be struck 3 times.
3. Measure the inflow velocity (type A1, A2, and B2 cabinets only). If the cabinet has separate downflow and exhaust blowers, repeat the downflow velocity measurement. Repeat the downflow velocity measurement for type B cabinets.

Acceptance: The difference between the inflow velocity prior to striking the speed control housing and the inflow velocity following striking the speed control housing shall not exceed 5 fpm. For cabinets with separate downflow and exhaust blowers and type B cabinets, the difference between the downflow velocity prior to striking the speed control housing and the downflow velocity following striking the speed control housing shall not exceed 5 fpm.

Issue paper
Logic: When experiencing problems with one speed control, we tapped on it with our knuckles and observed a significant motor voltage shift (enough to translate to a 12 fpm change in downflow velocity).

Time and power disconnect stability:

This test must be completed only after the motor speed has been adjusted and set at least once.

1. Measure the inflow velocity (type A1, A2, and B2). Measure the downflow velocity for type B cabinets and cabinets with separate downflow and exhaust blowers.
2. Disconnect power to the cabinet for a minimum of 24 hours.
3. Measure the inflow velocity again. If the cabinet has separate downflow and exhaust blowers, measure the downflow velocity again.

Acceptance: The difference between the initial inflow velocity and the final inflow velocity shall not exceed 3 fpm. The difference between the initial downflow velocity and the final downflow velocity shall not exceed 3 fpm.

Logic: This test should not result in any airflow shift but the 3 fpm acknowledges the DIM and anemometer tolerances. This test is proposed because several cabinets have been observed to drift when turned off for a period of time and because one cabinet was found to revert to old motor speed programming after the power was disconnected.
Joint Committee Issue Document

Submitter’s contact information:

Name: Mindy Costello

Company: NSF International

Mailing Address: 789 Dixboro Road

City: Ann Arbor State: MI Zip Code: 48105

Telephone Number: E-mail: mcostello@nsf.org

I hereby grant NSF International the non-exclusive, royalty free rights, including non-exclusive, royalty free rights in copyright; in this item and I understand that I acquire no rights in any publication of NSF International in which this item in this or another similar or analogous form is used.

Signature of Submitter *Mindy Costello Date: June 3, 2008

*Type written name will suffice as signature
Please indicate if you wish the item to be considered as an action item or as an information item.

Action: x Information: □

NSF Standard(s) Impacted:

49

Issue Statement:
Review of term "should" throughout standard.

Background:
This was proposed by the CPHC based on the ballot 49i20r1:

F.7.3.2 Interlocks

Supply fan interlock on B2 cabinets:

a) Shall be tested at time of alarm verification.

b) Reduce exhaust volume 20% once the cabinet is set or certified in its acceptable airflow range, and verify that audible and visual alarms indicate a 20% loss of exhaust volume within 15 sec. The internal cabinet fan(s) shall be interlocked to shut off at the same time the alarms are activated.

The comment from Duncan Ellison:
“While I support the proposed change, I did a search of NSF 49 for the word "should", and literally found several dozen places where the word "should" is used all of which imply that the action is not mandatory. Some of them may be candidates for change. I would recommend that NSF staff review the entire document for other possible changes.”

Recommendation:
Create a task group to review the usage of should throughout the standard.

Supplementary Materials (photographs, diagrams, reports, etc.):
Joint Committee Issue Document

Submitter’s contact information:

Name: Mindy Costello
Company: NSF International
Mailing Address: 789 Dixboro Road
City: Ann Arbor State: MI Zip Code: 48105
Telephone Number: E-mail: mcostello@nsf.org

I hereby grant NSF International the non-exclusive, royalty free rights, including non-exclusive, royalty free rights in copyright; in this item and I understand that I acquire no rights in any publication of NSF International in which this item in this or another similar or analogous form is used.

Signature of Submitter *Mindy Costello Date: June 3, 2008

*Type written name will suffice as signature
Please indicate if you wish the item to be considered as an action item or as an information item.

Action: x Information:

NSF Standard(s) Impacted:

49

Issue Statement:
In order to recruit members for this committee and maintain balance, I suggest formation of a membership task group.

Background:
Based on the ANSI audit of NSF, this recommendation was brought forth.

Recommendation:
Create a task group to recruit members and assist with maintenance of the committee under the direction of the secretariat and Joint Committee chair.

Supplementary Materials (photographs, diagrams, reports, etc.):
Joint Committee Issue Document

NOTE: An issue document may be submitted at any time – it comprises two parts: the cover sheet (this page) and a description of the issue to be submitted to the Joint Committee (following page). A separate issue form is required for each issue submitted. Issue papers include proposals for modification of a standard, information reports and (of current research, etc.). An issue paper shall be categorized as being for ACTION or for INFORMATION. Submitters should limit the Issue Paper to 1 or 2 pages – attachments detailing full recommendations or background information may be attached with supplementary information. The Chairperson of the appropriate Joint Committee will respond within 30 days of receipt of the issue document advising what steps will be taken. Any issue document intended for discussion at a Joint Committee meeting must be received at least 21 days prior to the meeting to ensure inclusion in the agenda.

Submit to:

NSF International
Attn: Standards Department
789 Dixboro Rd.
Ann Arbor, Michigan 48105

Fax: 734-827-6831
e-mail: standards@nsf.org

Submitter’s contact information:

Name: Richard Gilpin

Company: R. Gilpin, Ltd. (Univ MD Biotech Inst)

Mailing Address: 2515 Boston St., Ste. 408

City: Baltimore State: MD Zip Code: 21224

Telephone Number: 4109616638 E-mail: gilpin@legionella.com

I hereby grant NSF International the non-exclusive, royalty free rights, including non-exclusive, royalty free rights in copyright; in this item and I understand that I acquire no rights in any publication of NSF International in which this item in this or another similar or analogous form is used.

Signature of Submitter Richard W. Gilpin Date March 19, 2008

*Type written name will suffice as signature

Issue document.doc
Please insert a check (X) in the appropriate place to indicate if you wish the item to be considered as an action item or as an information item.

Action ____________ Information X

NSF Standard(s) Impacted:

NSF/ANSI 49 – 2007, Section 3 Definitions 3.3.

 Issue Statement:
Provide a concise statement of the issue, which reference as appropriate any specific section(s) of the standard(s) that are related to the issue.

Wording check comparison between NSF and BMBL 5th biosafety level definitions

Recommend replacing Definitions 3.3 wording with wording below from the BMBL 5th Edition after determination of Class I and III conventions.

Background:
Provide a brief background statement indicating the cause and nature of concern, the impacts identified relevant to public health, public understanding, etc, and any other reason why the issue should be considered by the Committee.

As promised, these are the biosafety level definitions from the BMBL 5th Edition website on 19Mar08

http://www.cdc.gov/od/ohs/biosfty/bmbl5/bmbl5toc.htm

Laboratory Biosafety Level Criteria
The essential elements of the four biosafety levels for activities involving infectious microorganisms and laboratory animals are summarized in Table 1 of this section and discussed in Section 2. The levels are designated in ascending order, by degree of protection provided to personnel, the environment, and the community. Standard microbiological practices are common to all laboratories. Special microbiological practices enhance worker safety, environmental protection, and address the risk of handling agents requiring increasing levels of containment.

Biosafety Level 1
Biosafety Level 1 is suitable for work involving well-characterized agents not known to consistently cause disease in immunocompetent adult humans, and present minimal potential hazard to laboratory personnel and the environment. BSL-1 laboratories are not necessarily separated from the general traffic patterns in the building. Work is typically conducted on open bench tops using standard microbiological practices. Special containment equipment or facility design is not required, but may be used as determined by appropriate risk assessment.
Laboratory personnel must have specific training in the procedures conducted in the laboratory and must be supervised by a scientist with training in microbiology or a related science.

Biosafety Level 2
Biosafety Level 2 builds upon BSL-1. BSL-2 is suitable for work involving agents that pose moderate hazards to personnel and the environment. It differs from BSL-1 in that 1) laboratory personnel have specific training in handling pathogenic agents and are supervised by scientists competent in handling infectious agents and associated procedures; 2) access to the laboratory is restricted when work is being conducted; and 3) all procedures in which infectious aerosols or splashes may be created are conducted in BSCs or other physical containment equipment.

Biosafety Level 3
Biosafety Level 3 is applicable to clinical, diagnostic, teaching, research, or production facilities where work is performed with indigenous or exotic agents that may cause serious or potentially lethal disease through inhalation route exposure. Laboratory personnel must receive specific training in handling pathogenic and potentially lethal agents, and must be supervised by scientists competent in handling infectious agents and associated procedures.

Biosafety Level 4
Biosafety Level 4 is required for work with dangerous and exotic agents that pose a high individual risk of life-threatening disease, aerosol transmission, or related agent with unknown risk of transmission. Agents with a close or identical antigenic relationship to agents requiring BSL-4 containment must be handled at this level until sufficient data are obtained either to confirm continued work at this level, or re-designate the level. Laboratory staff must have specific and thorough training in handling extremely hazardous infectious agents. Laboratory staff must understand the primary and secondary containment functions of standard and special practices, containment equipment, and laboratory design characteristics. All laboratory staff and supervisors must be competent in handling agents and procedures requiring BSL-4 containment. Access to the laboratory is controlled by the laboratory supervisor in accordance with institutional policies.
There are two models for BSL-4 laboratories: (1) A Cabinet Laboratory where all handling of agents must be performed in a Class III BSC. (2) A Suit Laboratory where personnel must wear a positive pressure protective suit.
BSL-4 Cabinet and Suit Laboratories have special engineering and design features to prevent microorganisms from being disseminated into the environment.
Recommendation:
If action by the Joint Committee is being requested, clearly state what action is needed: e.g., recommended changes to the standard(s) including the current text of the relevant section(s) indicating deletions by use of strike-out and additions by highlighting or underlining; e.g., reference of the issue to a Task Force for detailed consideration; etc. If recommended text changes are more than a half page, please attach a separate document.

No recommendation at this time

Supplementary Materials (photographs, diagrams, reports, etc.):
If not provided electronically, the submitter will be responsible to have sufficient copies to distribute to committee members.

No supplements

Submitter Richard W. Gilpin Date March 19, 2008