Report on Recommendations from DWA TG on Lead in Schools

November 29, 2018
Charge to Task Group

• Grew out of 2017 issue paper “Evaluation of products used in schools” (DWA-61-2017-5)

• Sense of urgency given mobilization of school and daycare center sampling by many states and cities

• Form a task group to investigate implementing a special higher-stringency certification level for products to be used in schools, day care centers, and for consumers desiring the additional level of protection.
Task Group/Voters Breakdown

Representation of TG in Voting

- Public Health / Regulatory
- Industry
- User
- General Interest
- Product Certifier / Testing Lab
- Unclassified

Voter | TG Member
General Topics Covered

• Review of NSF experience with product testing for lead release
• Recognizing it doesn’t necessarily statistically represent the distribution of products in the market, a call was made for similar data from all other certifiers
• Battelle document describing derivation of Q value was examined, with discussion of implications of lowering Q acceptance criterion
• Reviewed input from analytical laboratories on analytical constraints on feasibility of lowering Q
• Presentations on EDF study of faucet replacement experience, summary of national school sampling programs (done by states), a relevant journal paper on achieving low Pb release targets
• Discussions of new 3Ts sampling protocol and how school sampling programs are doing the sampling- what it does and does not identify
Potential NSF 61 Section 9 Tightening Approaches Viewed as Most Feasible by TG

• Q1: Maintain current NSF 61 test protocol, but lower Q criterion from 5 µg to 1 µg for all products.

• Q2: Maintain current NSF 61 test protocol and Q = 5 µg but add voluntary option for certification to lower Q = 1 µg [for school and day care uses].

• Q3: Option to require the average Pb release of test samples to be at or below 3 µg on Day 3 for sensitive applications.

• Q4: Require compliance with both Q = 1 µg and evaluation on Day 3.

• Q5: Keep current NSF 61, and create NEW standard with same test protocol but criterion of 1 µg on Day 3

• Q6: Favor some other specific approach, recommendations in comments
Choices for Voting for Each Approach

- **Acceptable**: proceed to put together ballot for JC
- **Potentially Acceptable**: create TG to refine Standard language for balloting
- **Needs More Study and/or More Field Information** (would require new TG)
- **Approach is Not Acceptable**
Straw Ballot Results
Q1: Maintain current NSF 61 test protocol, but lower Q criterion from 5 µg to 1 µg for all products

- Not Acceptable, 3
- Ready to Ballot, 4
- Create TG to Refine, 2
- Need More Field Study, 12
Q2: Maintain current NSF 61 test protocol and Q = 5 µg but add **voluntary option for certification to lower Q = 1 µg** [for school and day care uses].
Q3: Option to require the **average** Pb release of test samples to be **at or below 3 µg on Day 3** for sensitive applications.

- **Not Acceptable, 0**
- **Need More Field Study, 11**
- **Ready to Ballot, 3**
- **Create TG to Refine, 7**
Q4: Require compliance with both $Q = 1 \, \mu g$ and evaluation on Day 3.
Q5: Keep current NSF 61, and create NEW standard with same test protocol but criterion of 1 µg on Day 3
Q6: Other short-term solution (please detail in comment section).

- Need More Field Study, 10
- Create TG to Refine, 4
- Not Acceptable, 5
- Ready to Ballot, 2
Principal Industry Concerns (and others)

- Given current sampling protocols, how do we know how much of a problem new NSF 61 compliant devices really are, in schools and day care centers?
- What is the relative impact of variability from product to product on meeting a lowered Q criterion?
- What is the range in lead leaching from a given certified product, in actual field situations across US water qualities?
- To what extent would a lower Q value really solve the lead release problems observed?
Principle Concerns of PH/Regulatory Members (and others)

• What we used to think a few years ago was an acceptable amount of lead leaching, is no longer considered to be adequately protective.

• There is enough anecdotal Pb sampling evidence with different sampling protocols to implicate at least some plumbing components (mainly faucets and some shutoff valves) meeting the current NSF/ANSI 61 and/or RLDWA requirements.

• If it is feasible to lower Q or otherwise increase stringency of evaluation for certification, it should be done to provide additional consumer protection and reduce probability of Pb risk from drinking water.

• Increased stringency is good overall, it should not be restricted to products used only in schools and day care centers.
Summary of Levels of Support

• Most support (among voters) was for a voluntary certification to more stringent Q value
 ○ By annex? (such as old Annex G)

• Nearly even split for shortening the test to 3 days and using an intermediate Q value (3) for sensitive applications.

• No voter found 3 day test with Q = 3 “Not acceptable”
Potential Action Items

• Motion to disband this TG
 o Several paths forward were identified
 o No studies funded and ongoing that would satisfy further information needs as identified by TG members

• Motion(s) to replace this TG with one or more TGs specific to standard changes to move forward to balloting in near timeframe (months)