Participating members:
Neptune-Benson, Inc. George, Ron
NSF International Choe, Sung
NeoTech Aqua Diefenthal, George
ChlorKing Incorporated Pearce, Steve
NSF International Schaefer, Kevin

Participating observers:
Filtrex, Inc. Grutzmacher, Mike
Paramount Schulze, Jeff
NSF International Snider, Jason

Discussion
R. George welcomed everyone and called the meeting to order. J. Snider took roll and read the anti-trust statement. Five of the 13 voting members were present (38%) which did not represent a quorum.

R. George began with a review of the previous meeting summary, including the previous action items.

Motion by R. George Accept the 12-6-18 meeting summary
Second: G. Diefenthal
Discussion: None.
Vote: All in favor.
Motion: Carries.

The group began with RWF 2016-4 – alternate lamps, which had been revised after an r1 straw ballot during the group’s last teleconference, resulting in 50i141r2 draft language. G. Diefenthal was drafting language for this revision and was collecting data to confirm what information a manufacturer would need to supply to confirm that an alternate lamp was equivalent.

Discussion turned to RWF-2019-4 – Chloramine Reduction. The language had been revised during the Joint Committee meeting in September and the meeting summary excerpt was shared as a starting point for discussion. S. Pearce asked if the goal was a chloramine reduction to 0.4 ppm, a starting point of chloramine levels would need to be determined. R. George suggested finding a mean starting point based on what operators are seeing in the field, and then determining if that level is achievable in the lab. S. Pearce noted that a water source with a chloramine level higher than that of the facility could skew results.

The group discussed whether the lab test would need to continuously add chloramines during the test. S. Choe stated that the current WCD test starts with a baseline of chloramines, and measures reduction. K. Schaefer added that the baseline chloramine level with the current WCD method was about 0.5ppm. There was general agreement that this baseline level was not representative of real-world conditions for the suggested language. K. Schaefer suggested looking at a different bather load, possibly modeled after the drinking water testing. S. Pearce suggested that the test should start at 0.8 ppm and look for a reduction to .04 ppm. K. Schaefer asked if the group felt that it was important to have both free chlorine and chloramines present during the test. The group agreed that it was important. There was some discussion on if it would be possible to develop a test method that was repeatable in the lab. K. Schaefer added that the group would need to do would be to change the bather load, and ensure it was possible to repeatedly have free chlorine residuals during the test. The group decided to wait until K. Schaefer had time to determine if it were feasible to develop a test method. K. Schaefer asked if single pass measurements were acceptable to avoid large amounts of water being required for testing. The group felt that this would not be ideal, as it was not indicative of real-world conditions. K. Schaefer inquired what a reasonable time frame would be to see the desired chloramine reduction. The group agreed on a 24-hour time frame. K. Schaefer suggested that if a 0.8 ppm to 0.4 ppm reduction were to occur in 24 hours, the test would be set up on a tank with a similar number of turnovers, but not necessarily the
same size. The group considered adding a period during the 24-hour test to simulate bather load and a period to simulate recovery time.

K. Schaefer stated he would work on developing a test methodology, and once that was complete, the group would schedule a call to review.

Action items

G. Diefenthal to draft 50i141r2 for Task Group straw ballot.
K. Schaefer to develop test methodology for UV chloramine reduction test.