I. PFAS Task Group Update

1st Motion: Ballot proposal of additional PFAS compounds under NSF/ANSI 53 with the caveat that validation testing is still required prior to inclusion in the standard. R. Herman motioned; S. Ver Strat seconded.

Discussion: A. Patil provided a brief history of the PFAS task group activities. This group was originally formed to consider a reduction claim in the DWTU standards for PFOA and PFOS for activated carbon, reverse osmosis (RO), and anion exchange technologies. These protocols expanded on those originally developed for NSF P473, and were successfully balloted into NSF/ANSI 53 and 58 last year. At the 2019 DWTU JC meeting, the scope of the task group was expanded to consider other PFAS contaminants. A. Patil reported that extensive work has been done by the task group to identify emergent PFAS contaminants, determine their relative toxicity and occurrence levels, and group them according to those criteria. In addition to developing influent and effluent levels for six individual compounds (PFOA + PFOS, PFNA, PFHxS, Gen X, and PFHpA), the task group is recommending the option for a general PFAS reduction claim, which would include a mixture of eight PFAS contaminants with a total influent challenge level of 3,000 ppt. The total PFAS challenge would be made up of PFOA (500 ppt), PFOS (1,000 ppt), PFHxS (200 ppt), PFNA (40 ppt), PFHpA (40 ppt), Genex (900 ppt), PFBS (260 ppt), and PFDA (10 ppt). A. Patil noted that PFBA has not been included in the mix. Although it has a high occurrence level (95% occurrence level at 2,000 ppt), the toxicity health level is even higher (7,000 ppt reported in MN data). He added that PFAS such as PFBS, PFBA, PFHpA, and PFDA do not occur at levels higher than their health advisory levels established by the states.

R. Regunathan stated that a number of states have already spent a lot of time evaluating and establishing their requirements, including MI, MA, MN, NJ, VT, NH, NY and CA. The states have identified these individual chemicals and have collected occurrence data. R. Regunathan noted that other states are looking at total PFAS levels. He reiterated that the task group is proposing a total PFAS influent challenge level of 3,000 ppt, with a 20 ppt effluent requirement.

Members discussed the fact that several states have specified levels that are lower than the EPA’s health advisory level of 70 ppt. The question was raised on how this group plans to resolve the differences between these states. A. Patil explained that a 20 ppt effluent level will meet the lowest concentration level of any state. R. Regunathan noted that the state of Michigan has completed a tox analysis and they have specified the total maximum PFAS level at 100 ppt (e.g., PFOA at 8 ppt, PFOS at 16 ppt, etc.). Therefore, the task group’s proposal of 20 ppt will be acceptable. A. Zoldan stated her support for the proposal but cautioned against assuming that this combined level would be acceptable at the state level.

F. Lemieux agreed, and stated that validation testing would set the baseline of what level of reduction can be achieved and would help to set the specific reduction level for individual contaminants. A.
Patil clarified that the manufacturer would have the choice of selecting a total PFAS reduction claim or a reduction claim for individual compounds.

R. Herman recommended that the proposal be balloted with the JC prior to validation testing. The labs will want to confirm that the JC supports this approach prior to conducting expensive validation testing. A. Patil and R. Regunathan agreed. E. Leung suggested using the new test challenge water on existing certified products to confirm the level of performance. A. Patil confirmed that the task group has already reviewed data that indicate that all three technologies (carbon, anion-exchange, and RO) are able to remove these contaminants to almost non-detect levels.

It was noted that while the draft shows the proposed language for NSF/ANSI 53, this will also apply to NSF/ANSI 58. M. Leslie confirmed that the charge of the task group was to address PFAS reduction in both NSF/ANSI 53 and 58. If the JC supports sending the current NSF/ANSI 53 draft to ballot, a similar ballot for NSF/ANSI 58 will be submitted at the same time.

Vote: All in favor.

Motion passed.

2nd Motion: This ballot proposal should also apply to NSF/ANSI 58. A. Patil motioned; R. Regunathan seconded.

Vote: All in favor.

Motion passed.